Processing math: 1%

Class 12 DIfferentiation | Important Questions with Answers | JEE Mains, Advanced, AIEEE, WBJEE and others entrance examinations

 

differentiation-important-questions-for-jee-aieee-wbjee-2021




Q1.If f(2)=4,f{}'(2)=4 then find the value of lim_{x\rightarrow 2}\frac{xf(2)-2f(x)}{x-2}. [AIEEE 2002]

a. 2

b.-4

c.2

d.3


Ans: -4

Hint: Let, \small x-2=h, Now find \small \lim_{h\rightarrow 0} \frac{(h+2)f(20-2f(h+2)}{h}.


Q2.If f(1)=1,f{}'(1)=2 then find the value of \small lim_{x\rightarrow 1}\frac{\sqrt f(x) -1}{\sqrt x -1} [AIEEE 2002]

a. 1

b. 2

c. 3

d. 4


Ans: 2

Hint: f{}'(1)= lim_{x\rightarrow 1} \frac{f(x)-f(1)}{x-1}, Find lim_{x\rightarrow 1}\frac{f(x) -1}{x -1}\frac{\sqrt x +1}{\sqrt f(x) +1}= 2 \times \frac{2}{2}

Q3.If y=tan^{-1}\sqrt\frac{1-sinx}{1+sinx} then find the value of \frac{dy}{dx} at x=\frac{\pi}{6}[WBJEE 2004]

a. 1

b.-1

c. \frac{1}{2}

d. -2


Ans: \frac{1}{2}

Hint: \frac {1-sinx}{1+sinx}= tan^{2}(\frac{\beta}{2}), x+\beta=\frac{\pi}{2}=


Q4.If y=tan^{-1}\frac{cosx}{1+sinx} then find the value of \frac{dy}{dx}.

a. 1

b.-1

c. \frac{1}{2}

d. -2


Ans: \frac{1}{2}

Hint: Apply the formula \small \frac{cos2x}{1+sin2x}=\frac{1-tanx}{1+tanx}=\frac{tan 45^o-tanx}{1+tan 45^otanx}

Q5. x^y=e^{x-y}.\frac{dy}{dx}=? [WBJEE 1983]

Ans:

Hint:

y logx =x-y

or, y\frac{1}{x}+logx \frac{dy}{dx}=1-\frac{dy}{dx}


Q6. x=e^{y+e^{y+e^{y+e^{y+...\infty}}}}. \frac{dy}{dx}=? [AIEEE 2003]

Ans:

Hint:

x=e^{y+x}

or, logx={y+x}


Q7. f(x)=(\frac{a+x}{b+x})^x+cos x.then find the f{(0)}'=?

Ans: \small f(x)=e^{x log(\frac{a+x}{b+x})}+cos x

Apply chain rule

Q8.f(x)=(1+x)(1+x^2)(1+x^4)(1+x^8). Then f{(1)}'=?

Ans:

Hint:

f(x)=\frac{(1-x)(1+x)(1+x^2)(1+x^4)(1+x^8)}{1-x}

or, f(x)=\frac{(1-x^2)(1+x^2)(1+x^4)(1+x^8)}{1-x}

or,f(x)=\frac{(1-x^{16})}{1-x}

or, f(x)=1+2x+3x^2+.....+15x^4


Q9. y=log_{sinx}secx+10^{x^2}. Find \frac{dy}{dx}=?[WBJEE 1983]

Ans:

Hint:

\small log_{sinx}secx=\frac{log(secx)}{log(sinx)}=log(secx)-log(sinx).Apply Chain rule.


Q10.f(x)=log_{5}log_{3}x then find \small f{(e)}'=?

a. \frac{1}{elog5}

b. \frac{5}{elog5}

c. \frac{1}{elog3}

d. \frac{1}{log5}


Ans: \frac{1}{elog5}

Hint: log5 log_{3}x=log5\frac{logx}{log3} = log5(logx-log3).
Find f{(x)}' at the point x=e

Q11. If g,f are inverse function f{(x)}'=\frac{1}{1+x^3}. Then find the value of g{(x)}'=?.

Ans:

Hint:

f^{-}(x)=g(x)

or,x=f[g(x)]

or, \frac{dx}{dx}=f^{'}[g(x)]g^{'}(x)

or, 1=f^{'}[g(x)]g^{'}(x)

So, g^{'}(x)=1+[g(x)]^3


Q12.If y=log(log(logx)),\frac{dy}{dx}=?

a.log(logx)

b.log(logx)

c. \frac{1}{xlogxlog(logx)}

d.0


Ans: c

Hint: Chain rule

Q13.If f(x+y)=f(x)f(y) for x,y belongs to R, f(5)=2,f^{'}(0)=3.Find f^{'}(5)=?

a.5

b.3

c.2

d.6


Ans: d

Hint: If x=0,y=0, then f(0)={f(0)}^{2}. So, f(0)=1

f^{'}(0)=lim_{h \rightarrow 0}\frac{f(0+h)-f(0)}{h}=3

f^{'}(5)

= lim_{h \rightarrow 0}\frac{f(5+h)-f(5)}{h}

=im_{h \rightarrow 0}\frac{f(5)f(h)-f(5)}{h}

=6

Q14. y=f[f(x)],f(0)=0,f^{'}(0)=3 then {dy}{dx}=?

a.3

b.6

c.9.

d.0


Ans: 9

Hint: Chain rule


Q15.If f(x)=x^3-x^2+x and find \frac{d}{dx}{f^{-}(x)}=?

at x=f(2).

a. \frac{1}{3}

b.\frac{1}{9}

c.\frac{1}{27}

d.0


Ans: \frac{1}{9}

Hint: Let g(x)=f^{-}(x)

So, g[f(x)]=x

or, g^{'}[f(x)]f^{'}(x)=1

Put x=2

or,g^{'}[f(2)]f^{'}(2)=1


Tags: Differentiation Suggestions 2021, Differentiation Important Questions, WBJEE 2021, 
Post a Comment (0)
Previous Post Next Post