Class 12 DIfferentiation | Important Questions with Answers | JEE Mains, Advanced, AIEEE, WBJEE and others entrance examinations

 

differentiation-important-questions-for-jee-aieee-wbjee-2021




Q1.If $ f(2)=4,f{}'(2)=4$ then find the value of $ lim_{x\rightarrow 2}\frac{xf(2)-2f(x)}{x-2}$. [AIEEE 2002]

a. 2

b.-4

c.2

d.3


Ans: -4

Hint: Let, $\small x-2=h$, Now find $\small \lim_{h\rightarrow 0} \frac{(h+2)f(20-2f(h+2)}{h}$.


Q2.If $ f(1)=1,f{}'(1)=2$ then find the value of $\small lim_{x\rightarrow 1}\frac{\sqrt f(x) -1}{\sqrt x -1}$ [AIEEE 2002]

a. 1

b. 2

c. 3

d. 4


Ans: 2

Hint: $f{}'(1)= lim_{x\rightarrow 1} \frac{f(x)-f(1)}{x-1}$, Find $lim_{x\rightarrow 1}\frac{f(x) -1}{x -1}\frac{\sqrt x +1}{\sqrt f(x) +1}$= $ 2 \times \frac{2}{2}$

Q3.If $y=tan^{-1}\sqrt\frac{1-sinx}{1+sinx}$ then find the value of $\frac{dy}{dx}$ at $ x=\frac{\pi}{6}$[WBJEE 2004]

a. 1

b.-1

c. $\frac{1}{2}$

d. -2


Ans: $\frac{1}{2}$

Hint: $\frac {1-sinx}{1+sinx}= tan^{2}(\frac{\beta}{2}), x+\beta=\frac{\pi}{2}=$


Q4.If $y=tan^{-1}\frac{cosx}{1+sinx}$ then find the value of $\frac{dy}{dx}$.

a. 1

b.-1

c. $ \frac{1}{2}$

d. -2


Ans: $\frac{1}{2}$

Hint: Apply the formula $\small \frac{cos2x}{1+sin2x}=\frac{1-tanx}{1+tanx}=\frac{tan 45^o-tanx}{1+tan 45^otanx}$

Q5.$ x^y=e^{x-y}$.$\frac{dy}{dx}=?$ [WBJEE 1983]

Ans:

Hint:

$y logx =x-y$

or, $ y\frac{1}{x}+logx \frac{dy}{dx}=1-\frac{dy}{dx}$


Q6. $x=e^{y+e^{y+e^{y+e^{y+...\infty}}}}$.$ \frac{dy}{dx}=?$ [AIEEE 2003]

Ans:

Hint:

$ x=e^{y+x}$

or, $ logx={y+x}$


Q7. $ f(x)=(\frac{a+x}{b+x})^x+cos x$.then find the $f{(0)}'=?$

Ans: $\small f(x)=e^{x log(\frac{a+x}{b+x})}+cos x$

Apply chain rule

Q8.$f(x)=(1+x)(1+x^2)(1+x^4)(1+x^8)$. Then $ f{(1)}'=?$

Ans:

Hint:

$f(x)=\frac{(1-x)(1+x)(1+x^2)(1+x^4)(1+x^8)}{1-x}$

or,$ f(x)=\frac{(1-x^2)(1+x^2)(1+x^4)(1+x^8)}{1-x}$

or,$f(x)=\frac{(1-x^{16})}{1-x}$

or,$ f(x)=1+2x+3x^2+.....+15x^4$


Q9. $ y=log_{sinx}secx+10^{x^2}$. Find $ \frac{dy}{dx}=?$[WBJEE 1983]

Ans:

Hint:

$\small log_{sinx}secx=\frac{log(secx)}{log(sinx)}=log(secx)-log(sinx)$.Apply Chain rule.


Q10.$f(x)=log_{5}log_{3}x$ then find $\small f{(e)}'=?$

a. $ \frac{1}{elog5}$

b. $ \frac{5}{elog5}$

c. $\frac{1}{elog3}$

d. $ \frac{1}{log5}$


Ans: $ \frac{1}{elog5}$

Hint: $ log5 log_{3}x=log5\frac{logx}{log3} = log5(logx-log3)$.
Find $ f{(x)}'$ at the point x=e

Q11. If $g,f$ are inverse function $ f{(x)}'=\frac{1}{1+x^3}$. Then find the value of $ g{(x)}'=?$.

Ans:

Hint:

$ f^{-}(x)=g(x)$

or,$x=f[g(x)]$

or,$ \frac{dx}{dx}=f^{'}[g(x)]g^{'}(x)$

or,$ 1=f^{'}[g(x)]g^{'}(x)$

So, $g^{'}(x)=1+[g(x)]^3$


Q12.If $y=log(log(logx)),\frac{dy}{dx}=?$

a.$log(logx)$

b.$log(logx)$

c.$ \frac{1}{xlogxlog(logx)}$

d.0


Ans: c

Hint: Chain rule

Q13.If $f(x+y)=f(x)f(y)$ for $x,y$ belongs to $R$, $ f(5)=2,f^{'}(0)=3$.Find $f^{'}(5)=?$

a.5

b.3

c.2

d.6


Ans: d

Hint: If$ x=0,y=0$, then $ f(0)={f(0)}^{2}$. So, $ f(0)=1$

$f^{'}(0)=lim_{h \rightarrow 0}\frac{f(0+h)-f(0)}{h}=3$

$f^{'}(5)$

=$ lim_{h \rightarrow 0}\frac{f(5+h)-f(5)}{h}$

=$im_{h \rightarrow 0}\frac{f(5)f(h)-f(5)}{h}$

=6

Q14. $y=f[f(x)],f(0)=0,f^{'}(0)=3$ then $ {dy}{dx}=?$

a.3

b.6

c.9.

d.0


Ans: 9

Hint: Chain rule


Q15.If $f(x)=x^3-x^2+x$ and find $\frac{d}{dx}{f^{-}(x)}=?$

at $ x=f(2)$.

a. $ \frac{1}{3}$

b.$\frac{1}{9}$

c.$\frac{1}{27}$

d.$0$


Ans: $ \frac{1}{9}$

Hint: Let $g(x)=f^{-}(x)$

So, $g[f(x)]=x$

or, $g^{'}[f(x)]f^{'}(x)=1$

Put $x=2$

or,$g^{'}[f(2)]f^{'}(2)=1$


Tags: Differentiation Suggestions 2021, Differentiation Important Questions, WBJEE 2021, 
Post a Comment (0)
Previous Post Next Post