
Limits Important Questions for JEE Mains, Advanced, AIEEE
Q1. \lim_{x\rightarrow 0}\frac {log_{e}(1+3x)-log_{e}(3-x)}{x}=?[AIEEE 2003]
Ans:
Shortcut method:
\lim_{x\rightarrow 0}\frac {log_{e}(1+ax)-log_{e}(a-x)}{x}=\frac{2}{a}
Put a=3
\lim_{x\rightarrow 0}\frac {log_{e}(1+3x)-log_{e}(3-x)}{x}=\frac{2}{3}
Q2. \lim_{x\rightarrow \infty} (1+\frac{1}{x})^{\frac{1}{x}} = ? [JEE 2007]
Ans: Shortcut method:
Applying Formula 10
=\lim_{x\rightarrow \infty} e^{(1+\frac{1}{x}-1)\frac{1}{x}}
=e^{\frac{1}{2}}
Q3. \lim_{x\rightarrow \infty} (\frac{x+6}{x+1})^{x+4} =? [JEE 2004, IIT 1990]
= \lim_{x\rightarrow \infty} (1+\frac{5}{x+1})^{x+1+3}
Now,
Case:1
= \lim_{x+1\rightarrow \infty} (1+\frac{5}{x+1})^{x+1}
= e^5
Case:2
=\lim_{x\rightarrow \infty} (1+\frac{5}{x+1})^{3}
= 1
So, \small \lim_{x\rightarrow \infty} (\frac{x+6}{x+1})^{x+4}=3
Q4. \lim_{x\rightarrow 0} (\frac{2^x-1}{\sqrt {x+1} -1})=?[JEE 2010, IIT 1982]
Ans:
Dividing by \small x for this limit \small \lim_{x\rightarrow 0} (\frac{2^x-1}{\sqrt {x+1} -1})
Trick:
Case1:
\lim_{x\rightarrow 0} \frac{2^x-1}{x}=log_{e}2
Case2:
\small \lim_{x\rightarrow 0} \frac{\sqrt {x+1} -1}{x+1-1} = \frac{1}{2}
Ans: \small log_{e}2
Q5.\small \lim_{x\rightarrow 0} \frac{xe^x-log(1+x)}{x^2}=? [WBJEE]
Ans:
= \lim_{x\rightarrow 0} \frac{xe^x-x+x-log(1+x)}{x^2}
\small \lim_{x\rightarrow 0} [\frac{xe^x-x}{x^2}+\frac{x-(x-\frac{x^2}{2}+\frac{x^3}{3}-..)}{x^2}]
= 1+\small \frac{1}{2}+0+0+....
Q6.\small \lim_{x\rightarrow \infty} (\frac{5x^2+1}{3x^2+1})^{\frac{1}{x^2}}=? [IIT 1996, WBJEE 2010]
Ans:
=\small e^{\lim_{x\rightarrow \infty} (\frac{5x^2+1}{3x^2+1}-1)^{\frac{1}{x^2}}}
=\small e^{\lim_{x\rightarrow \infty} (\frac{2}{3x^2+1})^{\frac{1}{x^2}}}
=\small e^2
Q7.\small \lim_{n\rightarrow \infty} (\frac{5^n+3^n}{5^n-3^n})=?
a. 1
b. 2
c. \small \frac{1}{2}
d. \small \frac{1}{3}
Ans: (a)
Hint:
\small \lim_{n\rightarrow \infty} (\frac{5^n+3^n}{5^n-3^n})
=\small \lim_{n\rightarrow \infty} \frac{1+(\frac{3}{5})^n}{1-(\frac{3}{5})^n}
Since \small \frac{3}{5}<1, and \small n\rightarrow \infty, and (\frac{3}{5})\rightarrow 0
Q8. \small \lim_{n\rightarrow \infty} [cos\frac{x}{n}]^n=?
a. -1
b. 0
c. 1
d. None of these
Ans: 1
Hint:
\small \lim_{n\rightarrow \infty} [cos\frac{x}{n}]^n
\small \lim_{n\rightarrow \infty} [1-2 sin^2\frac{x}{2n}]^n
Apply Formula 10, when \small f(n)=\small 1-2 sin^2\frac{x}{2n},g(n)=n
Find, \small \lim_{n\rightarrow \infty}f(n)^{g(n)}
Q9. \small \lim_{x\rightarrow 0^+}\frac{e^{\left [ x \right ]+\left | x \right |}-1}{\left [ x \right ]+\left | x \right |}=?
a. 0
b. -1
c. 1
Ans: 1
Q10.\small \lim_{x\rightarrow 0} (\frac{sinx}{x})^{\frac{sinx}{x-sinx}}=?
a. \small e
b.\small e^{-1}
c.\small e^2
d.\small e^{-2}
Ans: \small e^{-1}
Hint: Apply formula 10
Q11.\small \lim_{x\rightarrow 0} [tan(\frac{\pi}{4}+x)]^{\frac{1}{x}}=?
a.\small e
b.\small e^3
c.\small e^2
d.\small e^{-1}
Ans: \small e^2
Hint:
Formula 10
Q12.\small \frac{sin|x|}{|x|}=?
a.1
b.-1
c.0
d. Does not exist
Ans: (d)
Q13.\small \lim_{x\rightarrow 0} \frac{e^{x^2}-cosx}{x^2}=?
a. \small \frac{1}{2}
b. 1
c. \small \frac{2}{3}
d.\small \frac{3}{2}
Ans: (d)
Hint: L'Hospitals Rule \small [\frac{0}{0}] form
Q145.\small\lim_{x\rightarrow 0} \frac{27^x-9^x-3^x+1}{\sqrt 2 -\sqrt(1+cosx)}=?
a. \small 4\sqrt 2(log 3)^2
b. \small 8\sqrt 2(log 3)^2
c. \small 12\sqrt 2(log 3)^2
d. \small 2\sqrt 2(log 3)^2
Ans:(b)
Q15.\small \lim_{x\rightarrow 1}\frac{sin(e^{x-1}-1)}{log_{e}x} =?
a. 0
b. \small e
c. \small \frac {1}{e}
d.\small 1
Ans: d
Hint: Let, \small z=x-1
=\lim_{x\rightarrow \infty} e^{(1+\frac{1}{x}-1)\frac{1}{x}}
=e^{\frac{1}{2}}
Q3. \lim_{x\rightarrow \infty} (\frac{x+6}{x+1})^{x+4} =? [JEE 2004, IIT 1990]
= \lim_{x\rightarrow \infty} (1+\frac{5}{x+1})^{x+1+3}
Now,
Case:1
= \lim_{x+1\rightarrow \infty} (1+\frac{5}{x+1})^{x+1}
= e^5
Case:2
=\lim_{x\rightarrow \infty} (1+\frac{5}{x+1})^{3}
= 1
So, \small \lim_{x\rightarrow \infty} (\frac{x+6}{x+1})^{x+4}=3
Q4. \lim_{x\rightarrow 0} (\frac{2^x-1}{\sqrt {x+1} -1})=?[JEE 2010, IIT 1982]
Ans:
Dividing by \small x for this limit \small \lim_{x\rightarrow 0} (\frac{2^x-1}{\sqrt {x+1} -1})
Trick:
Case1:
\lim_{x\rightarrow 0} \frac{2^x-1}{x}=log_{e}2
Case2:
\small \lim_{x\rightarrow 0} \frac{\sqrt {x+1} -1}{x+1-1} = \frac{1}{2}
Ans: \small log_{e}2
Q5.\small \lim_{x\rightarrow 0} \frac{xe^x-log(1+x)}{x^2}=? [WBJEE]
Ans:
= \lim_{x\rightarrow 0} \frac{xe^x-x+x-log(1+x)}{x^2}
\small \lim_{x\rightarrow 0} [\frac{xe^x-x}{x^2}+\frac{x-(x-\frac{x^2}{2}+\frac{x^3}{3}-..)}{x^2}]
= 1+\small \frac{1}{2}+0+0+....
Q6.\small \lim_{x\rightarrow \infty} (\frac{5x^2+1}{3x^2+1})^{\frac{1}{x^2}}=? [IIT 1996, WBJEE 2010]
Ans:
=\small e^{\lim_{x\rightarrow \infty} (\frac{5x^2+1}{3x^2+1}-1)^{\frac{1}{x^2}}}
=\small e^{\lim_{x\rightarrow \infty} (\frac{2}{3x^2+1})^{\frac{1}{x^2}}}
=\small e^2
Q7.\small \lim_{n\rightarrow \infty} (\frac{5^n+3^n}{5^n-3^n})=?
a. 1
b. 2
c. \small \frac{1}{2}
d. \small \frac{1}{3}
Ans: (a)
Hint:
\small \lim_{n\rightarrow \infty} (\frac{5^n+3^n}{5^n-3^n})
=\small \lim_{n\rightarrow \infty} \frac{1+(\frac{3}{5})^n}{1-(\frac{3}{5})^n}
Since \small \frac{3}{5}<1, and \small n\rightarrow \infty, and (\frac{3}{5})\rightarrow 0
Q8. \small \lim_{n\rightarrow \infty} [cos\frac{x}{n}]^n=?
a. -1
b. 0
c. 1
d. None of these
Ans: 1
Hint:
\small \lim_{n\rightarrow \infty} [cos\frac{x}{n}]^n
\small \lim_{n\rightarrow \infty} [1-2 sin^2\frac{x}{2n}]^n
Apply Formula 10, when \small f(n)=\small 1-2 sin^2\frac{x}{2n},g(n)=n
Find, \small \lim_{n\rightarrow \infty}f(n)^{g(n)}
Q9. \small \lim_{x\rightarrow 0^+}\frac{e^{\left [ x \right ]+\left | x \right |}-1}{\left [ x \right ]+\left | x \right |}=?
a. 0
b. -1
c. 1
Ans: 1
Q10.\small \lim_{x\rightarrow 0} (\frac{sinx}{x})^{\frac{sinx}{x-sinx}}=?
a. \small e
b.\small e^{-1}
c.\small e^2
d.\small e^{-2}
Ans: \small e^{-1}
Hint: Apply formula 10
Q11.\small \lim_{x\rightarrow 0} [tan(\frac{\pi}{4}+x)]^{\frac{1}{x}}=?
a.\small e
b.\small e^3
c.\small e^2
d.\small e^{-1}
Ans: \small e^2
Hint:
Formula 10
Q12.\small \frac{sin|x|}{|x|}=?
a.1
b.-1
c.0
d. Does not exist
Ans: (d)
Q13.\small \lim_{x\rightarrow 0} \frac{e^{x^2}-cosx}{x^2}=?
a. \small \frac{1}{2}
b. 1
c. \small \frac{2}{3}
d.\small \frac{3}{2}
Ans: (d)
Hint: L'Hospitals Rule \small [\frac{0}{0}] form
Q145.\small\lim_{x\rightarrow 0} \frac{27^x-9^x-3^x+1}{\sqrt 2 -\sqrt(1+cosx)}=?
a. \small 4\sqrt 2(log 3)^2
b. \small 8\sqrt 2(log 3)^2
c. \small 12\sqrt 2(log 3)^2
d. \small 2\sqrt 2(log 3)^2
Ans:(b)
Q15.\small \lim_{x\rightarrow 1}\frac{sin(e^{x-1}-1)}{log_{e}x} =?
a. 0
b. \small e
c. \small \frac {1}{e}
d.\small 1
Ans: d
Hint: Let, \small z=x-1
Tags: JEE Mains 2021, WBJEE 2021, AIEEE, Limits Imortant Questions with Answers, Limits Previous Years Solutions