Processing math: 100%

Class 12 | Limits | Suggestions and Importants Questions, Prevoius Years Solutons | Important for JEE Mains, JEE Advanced, AIEEE, WBJEE, and others

Limits-Important-Questions-for-JEE-WBJEE-Engineering-Entrance-Exams


Limits Important Questions for JEE Mains, Advanced, AIEEE

Q1. \lim_{x\rightarrow 0}\frac {log_{e}(1+3x)-log_{e}(3-x)}{x}=?[AIEEE 2003]


Ans:
Shortcut method:

\lim_{x\rightarrow 0}\frac {log_{e}(1+ax)-log_{e}(a-x)}{x}=\frac{2}{a}
Put a=3
\lim_{x\rightarrow 0}\frac {log_{e}(1+3x)-log_{e}(3-x)}{x}=\frac{2}{3}


Q2. \lim_{x\rightarrow \infty} (1+\frac{1}{x})^{\frac{1}{x}} = ?  [JEE 2007]


Ans: Shortcut method:

Applying Formula 10 

=\lim_{x\rightarrow \infty} e^{(1+\frac{1}{x}-1)\frac{1}{x}}

=e^{\frac{1}{2}}


Q3. \lim_{x\rightarrow \infty} (\frac{x+6}{x+1})^{x+4} =? [JEE 2004, IIT 1990]


= \lim_{x\rightarrow \infty} (1+\frac{5}{x+1})^{x+1+3}


Now,

Case:1

= \lim_{x+1\rightarrow \infty} (1+\frac{5}{x+1})^{x+1}

= e^5


Case:2

=\lim_{x\rightarrow \infty} (1+\frac{5}{x+1})^{3}

= 1

So, \small \lim_{x\rightarrow \infty} (\frac{x+6}{x+1})^{x+4}=3


Q4. \lim_{x\rightarrow 0} (\frac{2^x-1}{\sqrt {x+1} -1})=?[JEE 2010, IIT 1982]

Ans:
Dividing by \small x for this limit \small \lim_{x\rightarrow 0} (\frac{2^x-1}{\sqrt {x+1} -1})

Trick:

Case1:

\lim_{x\rightarrow 0} \frac{2^x-1}{x}=log_{e}2


Case2:

\small \lim_{x\rightarrow 0} \frac{\sqrt {x+1} -1}{x+1-1} = \frac{1}{2}


Ans: \small log_{e}2


Q5.\small \lim_{x\rightarrow 0} \frac{xe^x-log(1+x)}{x^2}=? [WBJEE]


Ans:
= \lim_{x\rightarrow 0} \frac{xe^x-x+x-log(1+x)}{x^2}
\small \lim_{x\rightarrow 0} [\frac{xe^x-x}{x^2}+\frac{x-(x-\frac{x^2}{2}+\frac{x^3}{3}-..)}{x^2}]
= 1+\small \frac{1}{2}+0+0+....


Q6.\small \lim_{x\rightarrow \infty} (\frac{5x^2+1}{3x^2+1})^{\frac{1}{x^2}}=? [IIT 1996, WBJEE 2010]

Ans:

=\small e^{\lim_{x\rightarrow \infty} (\frac{5x^2+1}{3x^2+1}-1)^{\frac{1}{x^2}}} 

=\small e^{\lim_{x\rightarrow \infty} (\frac{2}{3x^2+1})^{\frac{1}{x^2}}}

=\small e^2


Q7.\small \lim_{n\rightarrow \infty} (\frac{5^n+3^n}{5^n-3^n})=?

a. 1

b. 2

c. \small \frac{1}{2}

d. \small \frac{1}{3}


Ans: (a)

Hint:

\small \lim_{n\rightarrow \infty} (\frac{5^n+3^n}{5^n-3^n})

=\small \lim_{n\rightarrow \infty} \frac{1+(\frac{3}{5})^n}{1-(\frac{3}{5})^n}

Since \small \frac{3}{5}<1, and \small n\rightarrow \infty, and (\frac{3}{5})\rightarrow 0



Q8. \small \lim_{n\rightarrow \infty} [cos\frac{x}{n}]^n=?

a. -1

b. 0

c. 1

d. None of these


Ans: 1

Hint:

\small \lim_{n\rightarrow \infty} [cos\frac{x}{n}]^n

\small \lim_{n\rightarrow \infty} [1-2 sin^2\frac{x}{2n}]^n

Apply Formula 10, when \small f(n)=\small 1-2 sin^2\frac{x}{2n},g(n)=n

Find, \small \lim_{n\rightarrow \infty}f(n)^{g(n)}



Q9. \small \lim_{x\rightarrow 0^+}\frac{e^{\left [ x \right ]+\left | x \right |}-1}{\left [ x \right ]+\left | x \right |}=?

a. 0

b. -1

c. 1


Ans: 1


Q10.\small \lim_{x\rightarrow 0} (\frac{sinx}{x})^{\frac{sinx}{x-sinx}}=?
a. \small e

b.\small e^{-1}

c.\small e^2

d.\small e^{-2}



Ans: \small e^{-1}


Hint: Apply formula 10


Q11.\small \lim_{x\rightarrow 0} [tan(\frac{\pi}{4}+x)]^{\frac{1}{x}}=?

a.\small e

b.\small e^3

c.\small e^2

d.\small e^{-1}


Ans: \small e^2


Hint:
Formula 10


Q12.\small \frac{sin|x|}{|x|}=?

a.1

b.-1

c.0

d. Does not exist



Ans: (d)


Q13.\small \lim_{x\rightarrow 0} \frac{e^{x^2}-cosx}{x^2}=?


a. \small \frac{1}{2}

b. 1

c. \small \frac{2}{3}

d.\small \frac{3}{2}


Ans: (d)


Hint: L'Hospitals Rule \small [\frac{0}{0}] form



Q145.\small\lim_{x\rightarrow 0} \frac{27^x-9^x-3^x+1}{\sqrt 2 -\sqrt(1+cosx)}=?


a. \small 4\sqrt 2(log 3)^2

b. \small 8\sqrt 2(log 3)^2

c. \small 12\sqrt 2(log 3)^2

d. \small 2\sqrt 2(log 3)^2


Ans:(b)


Q15.\small \lim_{x\rightarrow 1}\frac{sin(e^{x-1}-1)}{log_{e}x} =?

a. 0

b. \small e

c. \small \frac {1}{e}

d.\small 1


Ans: d

Hint: Let, \small z=x-1


Tags: JEE Mains 2021, WBJEE 2021, AIEEE, Limits Imortant Questions with Answers, Limits Previous Years Solutions
Post a Comment (0)
Previous Post Next Post