1.If the parameter of the exponential distribution is $\theta$, then the condition of var=mean of the distribution is
a)$\theta=0$b)$\theta>0$c) $\theta<0$
Ans: a
2.If, $X_{i}$'s are following exponential distribution then what is the distribution of $Z=min(X_{1},X_{2},....X_{n})$?
a)Exponential b)Normal c)Gamma
Ans: a
3.Exponential distribution follows____________________.
a)Lack of memory property b)Symmetric property c)additive property
Ans: a
4.If $X$ has Cauchy distribution, The the distribution of $X^2$ is
a)Normal b)Exponential c)Beta
Ans: c
5. If $X\sim N(0,1)$ and $Y\sim N(0,1)$, then the distribution of $X/Y$ is
a) Cauchy b) Normal c) Beta
Ans: a
6.Which of the following distribution don't have any mean?
a) Cauchy b) Exponential c) Normal
Ans: a
7. Does the exponential distribution follows additive property?
a)Yes b)No
Ans: a
8.The arithmetic mean of the $X_{i}\sim Cauchy$ follows
a) Gamma b) Beta c) Cauchy
Ans: c
9.The characteristics function of standard Cauchy distribution is
a) $e^{-\left | t \right |}$ b) $e^{\left | t \right |}$ c) $e^{-\left | t^2 \right |}$
Ans: a
10.The range of the exponential distribution with parameter $\theta$ is
a)$\theta>0$, $x>0$ b) $\theta<0$, $x>0$c) $\theta>0$, $x<0$
Ans: a