1.If the parameter of the exponential distribution is \theta, then the condition of var=mean of the distribution is
a)\theta=0b)\theta>0c) \theta<0
Ans: a
2.If, X_{i}'s are following exponential distribution then what is the distribution of Z=min(X_{1},X_{2},....X_{n})?
a)Exponential b)Normal c)Gamma
Ans: a
3.Exponential distribution follows____________________.
a)Lack of memory property b)Symmetric property c)additive property
Ans: a
4.If X has Cauchy distribution, The the distribution of X^2 is
a)Normal b)Exponential c)Beta
Ans: c
5. If X\sim N(0,1) and Y\sim N(0,1), then the distribution of X/Y is
a) Cauchy b) Normal c) Beta
Ans: a
6.Which of the following distribution don't have any mean?
a) Cauchy b) Exponential c) Normal
Ans: a
7. Does the exponential distribution follows additive property?
a)Yes b)No
Ans: a
8.The arithmetic mean of the X_{i}\sim Cauchy follows
a) Gamma b) Beta c) Cauchy
Ans: c
9.The characteristics function of standard Cauchy distribution is
a) e^{-\left | t \right |} b) e^{\left | t \right |} c) e^{-\left | t^2 \right |}
Ans: a
10.The range of the exponential distribution with parameter \theta is
a)\theta>0, x>0 b) \theta<0, x>0c) \theta>0, x<0
Ans: a