MCQs on mgf law of large numbers

 


1. A random variable $X$ may have no moments but although its m.g.f exist- justify the statement.

a. True 

b. False 

c. not enough information.

Ans: a

2. If $Z$=$\frac{X-\mu}{\sigma }$, then find $E(Z)$

a. 0 

b. $\mu$ 

c. $\sigma$

Ans: a

3. What is the relation between the fourth order central moment and cumulants.

a. $\mu _{4}=\kappa_{4}+3\kappa_{2}^{2}$ 

b. $\mu _{4}=\kappa_{2}+3\kappa_{2}^{2}$ 

c. $\mu _{4}=\kappa_{2}+3\kappa_{4}^{2}$

Ans:  a

4. According to characteristics function $\phi (0)$=?

a. $0$

b.$1$

c.$\infty$

Ans:b

5."Characteristics function follows the property of conjugate function" - is it true or flase?

a. False

b. True 

Ans: b

6. A symmetric die is thrown $600$ times. find the probability(lower bound) of  getting 80 to 120 sixes.

a. $\frac{19}{24}$

b. $\frac{15}{24}$

c.  $\frac{10}{24}$

Ans: a 

7. If  X has p.g.f  $P(S)$. Then $X+1$ has __________________.

a. $sP(s)$

b. $s^2P(s)$

c.  $s^3P(s)$

Ans: a

8. If $X_{n}\overset{p}{\rightarrow}\alpha$ and $Y_{n}\overset{p}{\rightarrow}\beta  $,

$ n \rightarrow \infty$. Then $X_{n}\pm Y_{n}\overset{p}{\rightarrow}$ =? as $ n \rightarrow \infty$.

a. $\frac{\alpha}{\beta}$

b. $\alpha \pm \beta$

c. $\alpha \beta $

9.$\lim_{t\rightarrow \infty}\phi (t)$=?

a. $0$

b. $1$

c. $\infty$

Ans: a

10. m.g.f holds the Uniqueness theorem. Is it true?

a. No

b. Yes

c. Info not enough 

Ans: b

Do it your self: 

1.Find the m.g.f for for geometric distribution. Also find the mean and the variance of it.

 

2.If the moments of the variate X are defined by $E(X^r)$=$0.6$; $r$=1,2,3,..... show that $P(X=0)=0.4$, $P(X=1)=0.6$, $P(X\geqslant 2)$=0. 

 

3.Two unbiased dices are thrown. If X is the sum of the numbers showing up, proven that $P(|X-7|\geqslant 3)\leqslant \frac{35}{54}$. 

 

4.If $P{\left | \bar{X}_{n}-\mu \right |<0.5}\geqslant 0.95$, then find the the sample size by chebychev's inequality?

 

5.If $p(x)$=$\frac{1}{2^x}$; $x=1,2,3$.......... Find the mgf, mean, var.

 


Post a Comment (0)
Previous Post Next Post