Processing math: 100%

MCQs on mgf law of large numbers

 


1. A random variable X may have no moments but although its m.g.f exist- justify the statement.

a. True 

b. False 

c. not enough information.

Ans: a

2. If Z=\frac{X-\mu}{\sigma }, then find E(Z)

a. 0 

b. \mu 

c. \sigma

Ans: a

3. What is the relation between the fourth order central moment and cumulants.

a. \mu _{4}=\kappa_{4}+3\kappa_{2}^{2} 

b. \mu _{4}=\kappa_{2}+3\kappa_{2}^{2} 

c. \mu _{4}=\kappa_{2}+3\kappa_{4}^{2}

Ans:  a

4. According to characteristics function \phi (0)=?

a. 0

b.1

c.\infty

Ans:b

5."Characteristics function follows the property of conjugate function" - is it true or flase?

a. False

b. True 

Ans: b

6. A symmetric die is thrown 600 times. find the probability(lower bound) of  getting 80 to 120 sixes.

a. \frac{19}{24}

b. \frac{15}{24}

c.  \frac{10}{24}

Ans: a 

7. If  X has p.g.f  P(S). Then X+1 has __________________.

a. sP(s)

b. s^2P(s)

c.  s^3P(s)

Ans: a

8. If X_{n}\overset{p}{\rightarrow}\alpha and Y_{n}\overset{p}{\rightarrow}\beta  ,

n \rightarrow \infty. Then X_{n}\pm Y_{n}\overset{p}{\rightarrow} =? as n \rightarrow \infty.

a. \frac{\alpha}{\beta}

b. \alpha \pm \beta

c. \alpha \beta

9.\lim_{t\rightarrow \infty}\phi (t)=?

a. 0

b. 1

c. \infty

Ans: a

10. m.g.f holds the Uniqueness theorem. Is it true?

a. No

b. Yes

c. Info not enough 

Ans: b

Do it your self: 

1.Find the m.g.f for for geometric distribution. Also find the mean and the variance of it.

 

2.If the moments of the variate X are defined by E(X^r)=0.6; r=1,2,3,..... show that P(X=0)=0.4, P(X=1)=0.6, P(X\geqslant 2)=0. 

 

3.Two unbiased dices are thrown. If X is the sum of the numbers showing up, proven that P(|X-7|\geqslant 3)\leqslant \frac{35}{54}

 

4.If P{\left | \bar{X}_{n}-\mu \right |<0.5}\geqslant 0.95, then find the the sample size by chebychev's inequality?

 

5.If p(x)=\frac{1}{2^x}; x=1,2,3.......... Find the mgf, mean, var.

 


Post a Comment (0)
Previous Post Next Post