Processing math: 100%

MCQs on Expectation

 MCQs on Expectation


 

The average value of a random phenomenon is also termed as its mathematical expectation or expected value.

1. E(1/X)={1/E(X)} Is it true?

 

a.Yes
b.No

Ans: No

 

2.V(X+b)=?

 

a.V(X)
b.V(X)+V(b)
c.V(X)+b^2
 

Ans: V(X) 

 

3.If X and Y are independent then Cov(X,Y) =?

a.0
b.E(XY)
c.E(X)E(Y)
 

Ans:  0

4.A coin is tossed until a head appears. What is the expectation of the number of tosses? 

a.2
b.4
c.6
d.None

Ans: 2
 
5.Let the mean of the X is \mu , and the variance is \sigma^2. Then E(X-b)^2 will be min if 
 
a.b= \mu
b.b=\sigma^2
c.b=X^2
d.None

Ans:  b= \mu
 
6. Find the correct solutionV(X)=?
 
a.E[V(X|Y]+V[E(X|Y)]
b.E[V(Y|X]+V[E(X|Y)]
c.E[V(Y|X]+V[E(Y|X)]
d.None

Ans:  E[V(X|Y]+V[E(X|Y)]
 
7. If Var(X)=1 then Var(2X\pm 3)=?
 
a.5
b.13
c.4
 
Ans: 4
 
8.Cov(aX+bY.,bX+aY)=?
 
a.abVar(X+Y)
b.abCov(X+Y)
c.aCov(X+Y)

Ans:  abVar(X+Y)
 
9. Let f(x,y)=8xy, 0<x<y1; 0 elsewhere. What will be the value of E(Y|X=x)=?
 
a. \frac{2}{3} \frac{1+x+x^2}{1+x}
b. \frac{2}{3} \frac{x(1+x+x^2)}{1+x}
c. \frac{1+x^2}{2}
d. None

Ans:  \frac{2}{3} \frac{1+x+x^2}{1+x}
 
10. If P(X\leqslant Y)=1
 
a. E(X) \leqslant E(Y)
b. E(X) = E(Y)
c. E(X)\geq   E(Y)


 Do it yourself:

1.If f(x,y)=4xy for 0<x<1, 0<y<1, then find E(Y|x)=?, V(Y|x)=?.
 
2. Let X and Y is two iid variable and the mean of X and Y is 10,20. and the var are 2,3. Find the var of 3X+4Y.
 
3.A coin is tossed four times. Let X denote the number of times a head is followed  immediately by a tail. Find the distribution , mean and the variance.
 
4. 

                    X

Y

-1

0

Total

-1

0

.1

.1

.2

0

.2

.2

.2

.6

1

0

.1

.1

.2

Total

.2

.4

.4

1.0

 
a. Find the values of V(X), V(Y)
b. Find the V(Y|X=-1).  

5. What is the relation between cdf and Expectation?

Post a Comment (0)
Previous Post Next Post