Processing math: 0%

MCQs on random variables and distribution functions

 Random variables and Distribution functions

 

This chapter is consist of 

A/Distribution function
B/Discrete Random Variable 
C/Continuous Random Variable
D/Two dimensional random variable
 

1. If f is the distribution function of the r.v X then F(b)-F(a)-P(X=b)+P(X=a) =?

 

a.P( a \leqslant X <b)
b.P( a \leqslant X \leqslant b)
c.none 

Ans: P( a \leqslant X <b) 
 
2.

x

0

1

2

3

4

5

6

7

f(x)

0

k

2k

2k

3k

k^{2}

2k^{2}

7k^{2}+k

What is the value of k?

 

a.-1
b.2
c.3
d.-2

Ans: -1 

3. Consider a pdf f(x) = 6x(1-x), ), 0 \leqslant X \leqslant1
What will be the value of b, if P(X<b) = P(X>b)?
 
a.0.5
b.0.7
c.0.4
d.0.2
 
Ans: 0.5
 
4. Let G the geometric mean of the distribution and dF=6(2-x)(x-1), 1 \leqslant X \leqslant2
Choose the correct one?
 
a.6 log(16G)=19
b.16 log(6G)=19
c.6 log(19G)=16
d.None

Ans: 6 log(16G)=19
 
5.What is the mean deviation of the distribution  f(x) = \frac{3+2x}{18} for 2 \leqslant x \leqslant4,0 otherwise?
 
a.0.49
b.0.36
c.0.54
d.0.25

Ans:  0.49
 
6.

x

0\leqslant x <1

1\leqslant x <2

2\leqslant x <3

otherwise

f(x)

kx

k

-kx +3k

0

What will be the value of P(X>1.5)=?
 
a.\frac{1}{2}
b.\frac{3}{4}
c.\frac{1}{4}
d.None 

 Ans: \frac{1}{2}
 
7.

x

x <0

0\leqslant x <2

2\leqslant x <4

x\geqslant 4

F(x)

0

\frac{x}{8}

\frac{x^2}{16}

1

What will be the value of P(X<2)=? [ F(x) = cdf of the r.v X]
 
a.3/4
b.1/4
c.2/4
d.None
 
Ans: 1/4
 
8. MARGINAL DISTRIBUTION OF X 

x

1

2

3

4

P(X=x

10/36

9/36

8/36

9/36


Find the value of P(X=1|Y=1)=?
 
a.4/11
b.1/11
c.5/11
d.3/11
e.10/11
 
Ans: 4/11
9.

x

0 \leqslant x <2, 2\leqslant x <2

otherwise

f(x)

\frac{1}{8} (6-x-y)

0

What will be the value of P(X<1 \cap Y<3) 
 
a.3/8
b.4/8
c.5/8
d.None
 
Ans: 3/8
 
10.

x,y

\left | x \right |<1,\left | y \right |<1

otherwise

f_{XY}(x,y)

\frac{1}{4} (1+xy)

0

 
If X and Y are not independent by X^2,Y^2 are independent.Is it true?
 
a.Yes
b.No.

Ans: Yes
 
Do it yourself:  
 
1.The joint probability distribution for two random variables X and Y is given by : P(X=0,Y=1)=1/3, P(X=1,Y=-1)=1 and P(X=1,Y=1)=1/3. What is the conditional distribution of X given Y=1
 
2.If,P(0)= 3c^3,P(1)=4c-10c^2,P(2)=5c-1 for some c>0.a.Determine the value of the c?b.Compute the probabilities of P(X,2) and P(1<X<2)

3.If f(x)=A+Bx, 0\leqslant x \leqslant 1, and the mean is \frac{1}{2}.Find the value of the A and B.

4. .If f(x)=\frac{1}{2}(1+x), -1\leqslant x \leqslant 1, then find the Skewness and Kurtosis.

5.

X

0

1

2

3

p(x)

0.1

0.3

0.5

0.1


Let, Y= X^2+2X, Find the probability function and the mean,variance of Y.

6.

(x,y)

0 \leqslant y<x<\infty

otherwise

f(x,y)

ke^(x+y)

0

 
a.Determine k ?
b.Find the conditional distribution of f(x|y)? 
c.Compute P(Y \geqslant 3)?
d.Examine if X and Y are independent or not?
 
If you need answer script of these questions, then you can contact in our Facebook Page or through email

 
 
Good Luck

Post a Comment (0)
Previous Post Next Post