Random variables and Distribution functions
This chapter is consist of
A/Distribution functionB/Discrete Random Variable
C/Continuous Random Variable
D/Two dimensional random variable
D/Two dimensional random variable
1. If f is the distribution function of the r.v X then $F(b)-F(a)-P(X=b)+P(X=a)$ =?
a.$P( a \leqslant X <b)$
b.$P( a \leqslant X \leqslant b)$
c.none
Ans: $P( a \leqslant X <b)$
What is the value of $k$?
a.-1
b.2
c.3
d.-2
d.-2
Ans: -1
3. Consider a pdf $f(x)$ = $6x(1-x)$, ), $0 \leqslant X \leqslant1$
What will be the value of b, if $P(X<b)$ = $P(X>b)$?
a.0.5
b.0.7
c.0.4
d.0.2
b.0.7
c.0.4
d.0.2
Ans: 0.5
4. Let G the geometric mean of the distribution and $dF$=$6(2-x)(x-1)$, $1 \leqslant X \leqslant2$
Choose the correct one?
a.$6 log(16G)=19$
b.$16 log(6G)=19$
c.$6 log(19G)=16$
d.None
b.$16 log(6G)=19$
c.$6 log(19G)=16$
d.None
Ans: $6 log(16G)=19$
5.What is the mean deviation of the distribution $f(x)$ = $\frac{3+2x}{18}$ for $2 \leqslant x \leqslant4$,$0$ otherwise?
a.0.49
b.0.36
c.0.54
d.0.25
b.0.36
c.0.54
d.0.25
Ans: 0.49
6.
What will be the value of $P(X>1.5)$=?
a.$\frac{1}{2}$
b.$\frac{3}{4}$
c.$\frac{1}{4}$
b.$\frac{3}{4}$
c.$\frac{1}{4}$
d.None
Ans: $\frac{1}{2}$
7.
What will be the value of $P(X<2)$=? [ F(x) = cdf of the r.v X]
a.3/4
b.1/4
c.2/4
d.None
b.1/4
c.2/4
d.None
Ans: 1/4
8. MARGINAL DISTRIBUTION OF X
Find the value of $P(X=1|Y=1)$=?
a.4/11
b.1/11
c.5/11
d.3/11
e.10/11
b.1/11
c.5/11
d.3/11
e.10/11
Ans: 4/11
9.
What will be the value of $P(X<1 \cap Y<3)$
a.3/8
b.4/8
c.5/8
d.None
b.4/8
c.5/8
d.None
Ans: 3/8
10.
If $X$ and $Y$ are not independent by $X^2$,$Y^2$ are independent.Is it true?
a.Yes
b.No.
b.No.
Ans: Yes
Do it yourself:
1.The joint probability distribution for two random variables $X$ and $Y$ is given by : $P(X=0,Y=1)=1/3$, $P(X=1,Y=-1)=1$ and $P(X=1,Y=1)=1/3$. What is the conditional distribution of $X$ given $Y=1$?
2.If,$P(0)$= $3c^3$,$P(1)$=$4c-10c^2$,$P(2)$=$5c-1$ for some $c$>$0$.a.Determine the value of the $c$?b.Compute the probabilities of $P(X,2)$ and $P(1<X<2)$.
3.If $f(x)$=$A+Bx$, $0\leqslant x \leqslant 1$, and the mean is $\frac{1}{2}$.Find the value of the A and B.
4. .If $f(x)$=$\frac{1}{2}(1+x)$, $-1\leqslant x \leqslant 1$, then find the Skewness and Kurtosis.
5.
Let, Y= $X^2$+$2X$, Find the probability function and the mean,variance of Y.
6.
a.Determine $k$ ?
b.Find the conditional distribution of $f(x|y)$?
b.Find the conditional distribution of $f(x|y)$?
c.Compute $P(Y \geqslant 3)$?
d.Examine if $X$ and $Y$ are independent or not?
d.Examine if $X$ and $Y$ are independent or not?
If you need answer script of these questions, then you can contact in our Facebook Page or through email.
Good Luck