MCQs on random variables and distribution functions

 Random variables and Distribution functions

 

This chapter is consist of 

A/Distribution function
B/Discrete Random Variable 
C/Continuous Random Variable
D/Two dimensional random variable
 

1. If f is the distribution function of the r.v X then $F(b)-F(a)-P(X=b)+P(X=a)$ =?

 

a.$P( a \leqslant X <b)$
b.$P( a \leqslant X \leqslant b)$
c.none 

Ans: $P( a \leqslant X <b)$ 
 
2.

$x$

0

1

2

3

4

5

6

7

$f(x)$

0

$k$

$2k$

$2k$

$3k$

$k^{2}$

$2k^{2}$

$7k^{2}+k$

What is the value of $k$?

 

a.-1
b.2
c.3
d.-2

Ans: -1 

3. Consider a pdf $f(x)$ = $6x(1-x)$, ), $0 \leqslant X \leqslant1$
What will be the value of b, if $P(X<b)$ = $P(X>b)$?
 
a.0.5
b.0.7
c.0.4
d.0.2
 
Ans: 0.5
 
4. Let G the geometric mean of the distribution and $dF$=$6(2-x)(x-1)$, $1 \leqslant X \leqslant2$
Choose the correct one?
 
a.$6 log(16G)=19$
b.$16 log(6G)=19$
c.$6 log(19G)=16$
d.None

Ans: $6 log(16G)=19$
 
5.What is the mean deviation of the distribution  $f(x)$ = $\frac{3+2x}{18}$ for $2 \leqslant x \leqslant4$,$0$ otherwise?
 
a.0.49
b.0.36
c.0.54
d.0.25

Ans:  0.49
 
6.

$x$

$0\leqslant x <1$

$1\leqslant x <2$

$2\leqslant x <3$

$otherwise$

$f(x)$

$kx$

$k$

$-kx +3k$

$0$

What will be the value of $P(X>1.5)$=?
 
a.$\frac{1}{2}$
b.$\frac{3}{4}$
c.$\frac{1}{4}$
d.None 

 Ans: $\frac{1}{2}$
 
7.

$x$

$x <0$

$0\leqslant x <2$

$2\leqslant x <4$

$x\geqslant 4$

$F(x)$

$0$

$\frac{x}{8}$

$\frac{x^2}{16}$

$1$

What will be the value of $P(X<2)$=? [ F(x) = cdf of the r.v X]
 
a.3/4
b.1/4
c.2/4
d.None
 
Ans: 1/4
 
8. MARGINAL DISTRIBUTION OF X 

$x$

$1$

$2$

$3$

$ 4$

$P(X=x$

$10/36$

$9/36$

$8/36$

$9/36$


Find the value of $P(X=1|Y=1)$=?
 
a.4/11
b.1/11
c.5/11
d.3/11
e.10/11
 
Ans: 4/11
9.

$ x$

$0 \leqslant x <2$, $2\leqslant x <2$

$otherwise$

$f(x)$

$\frac{1}{8} (6-x-y)$

$0$

What will be the value of $P(X<1 \cap Y<3)$ 
 
a.3/8
b.4/8
c.5/8
d.None
 
Ans: 3/8
 
10.

$ x,y$

$\left | x \right |<1$,$\left | y \right |<1$

$otherwise$

$f_{XY}(x,y)$

$\frac{1}{4} (1+xy)$

$0$

 
If $X$ and $Y$ are not independent by $X^2$,$Y^2$ are independent.Is it true?
 
a.Yes
b.No.

Ans: Yes
 
Do it yourself:  
 
1.The joint probability distribution for two random variables $X$ and $Y$ is given by : $P(X=0,Y=1)=1/3$, $P(X=1,Y=-1)=1$ and $P(X=1,Y=1)=1/3$. What is the conditional distribution of $X$ given $Y=1$? 
 
2.If,$P(0)$= $3c^3$,$P(1)$=$4c-10c^2$,$P(2)$=$5c-1$ for some $c$>$0$.a.Determine the value of the $c$?b.Compute the probabilities of $P(X,2)$ and $P(1<X<2)$. 

3.If $f(x)$=$A+Bx$, $0\leqslant x \leqslant 1$, and the mean is $\frac{1}{2}$.Find the value of the A and B.

4. .If $f(x)$=$\frac{1}{2}(1+x)$, $-1\leqslant x \leqslant 1$, then find the Skewness and Kurtosis.

5.

$X$

$0$

$1$

$2$

$3$

$p(x)$

$0.1$

$0.3$

$0.5$

$0.1$


Let, Y= $X^2$+$2X$, Find the probability function and the mean,variance of Y.

6.

$(x,y)$

$0 \leqslant y<x<\infty $

$otherwise$

$f(x,y)$

$ke^(x+y)$

$0$

 
a.Determine $k$ ?
b.Find the conditional distribution of $f(x|y)$? 
c.Compute $P(Y \geqslant 3)$?
d.Examine if $X$ and $Y$ are independent or not?
 
If you need answer script of these questions, then you can contact in our Facebook Page or through email

 
 
Good Luck

Post a Comment (0)
Previous Post Next Post