MCQs on correrlation


1.What do we expect from the statement "points are very dense".

a. poor correlation

b. good correlation

c. nothing

Ans: a

2. "Correlation coefficient is independent of change of origin and scale". Is it true?

a.Yes

b.No

Ans: Yes

3. Two independent variables are uncorrelated.This implies 

a. $Cov(X,Y)=0$

b. $r(X,Y)=0$

c. $\sigma_{x}$$\sigma_{y}=0$

Ans: a

4.If $r$ is the correlation coefficient then $S.E(r)=?$

a. $\frac{1-n^2}{\sqrt r}$

b. $\frac{1-r^2}{\sqrt n}$

c. $\frac{1-r^2}{\sqrt r}$ 

Ans: b

5.Find $r(X,Y)$

                  $X$

$Y$

-1

1

0

1/8

3/8

1

2/8

2/8

a.0.26

b.0.36

c.0.46 

Ans: a

6. If $V$ =$X-Y$ and $U$ =$X+Y$, Then find the $Cov(U,V)$.

a. $\sigma_{x}$$\sigma_{y}$

b. $\sigma_{x}$+$\sigma_{y}$

c. $\sigma_{x}^2$+$\sigma_{y}^2$

Ans: c

7. The variables $X$ and $Y$ are connected by the relation $aX+bY+c=0$.The $r(X,Y)$ = $- 1$. Iff 

a. signs of a,b are alike

b. signs of a,b are different

c. None of them

Ans: a

8. To find the proficiency in possession of two characteristics we will use 

a. Rank correlation

b. Simple correlation

c. s.d

d. None of them

Ans: a

9. $V(aX\pm bY)=?$

a. $a^2V(X)\pm 2ab Cov(X,Y) +b^2 V(Y)$

b. $b^2V(X)\pm 2ab Cov(X,Y) +a^2 V(Y)$

c. $a^2V(X)\pm 2a^2b^2 Cov(X,Y) +b^2 V(Y)$

Ans: a

10. The coefficient of variation will have positive sign when 

a. X is increasing and Y is decreasing 

b. Y is increasing and X is decreasing 

c. X is increasing and Y is  increasing

Ans: c

 

Post a Comment (0)
Previous Post Next Post