Loading [MathJax]/extensions/MathEvents.js

Chapter Probability Part:2|Class 12|UGC CBCS| Statistics


                    Click here: Chapter Probability Part:1|Class 12|UGC CBCS| Statistics

Q11.Show that if a fair die is thrown twice getting 'five' in the first throw and getting 'six in the second throw are statistically independent.

Ans:

\small A: getting five in the first throw. \small P(A)=\frac{1}{6}

\small B: getting six in the second throw.\small P(B)=\frac{1}{6}

When a fair die throw twice the all possible out comes are 36.

(1,1),(1,2),......,(1,6)

(2,1),(2,2),.......,(2,6)

.

.

(5,1),(5,2),..(5,5),(5,6)

(6,1),(6,2),........,(6,6)

\small P(A\cap B)=\frac{1}{36}=\frac{1}{6}.\frac{1}{6}=P(A)P(B)


Q12.Each coefficient in the quadratic equation \small ax^2+bx+c=0 is determined by selecting randomly integers from 1,2,3,4,5. Find the probability that the equation will have 

i.equal roots 

ii. real roots

Ans: \small ax^2+bx+c=0  will have real roots if \small b^2=4ac

                                                                 equal roots if\small b^2\geq 4ac

\small a,b,c can take 1,2,3,4,5 these five values 

So all possible outcomes are \small 5^3=125

Note: As we know the highest value of b=5, thats why \small b^2_{max}=25


ac4acvalues of b statisfies
\small b^2\geq 4ac
cases
statisfies
\small b^2\geq 4ac
values of b statisfies
\small b^2= 4ac
cases
statisfies
\small b^2= 4ac

1

1

2

3

4

5

4

8

12

16

20

2,3,4,5

3,4,5

4,5

4,5

5

4

3

2

2

1

2



4

1



1


2

1

2

3

4

5

8

16

24

X

X

3,4,5

4,5

5

      3

      2

      1


4


1

3

1

2

3

4

5

12

24

X

X

X

4,5

5

2

1



4

1

2

3

4

5

16

X

X

X

X

4,5

2

4

1

5

1

2

3’

4

5

20

X

X

X

X

5

1



Total:                                               24                              4

\small P(real-roots)=\frac{24}{125}

\small P(equal-roots)=\frac{4}{125}


Q13.Suppose the chances of simultaneous occurence of two independent events A and B is \small \frac{1}{6} and the probability that none of these two events occurs in \small \frac{1}{3}.Find \small P(B)=?

Let, P(A)=x

P(B)=y

\small P(A\cap B)=xy=\frac{1}{6}

=\small xy=\frac{1}{6}

\small P(A^c \cap B^c)=\frac{1}{3}

=\small (1-x)(1-y)=\frac{1}{3}

Now put \small x=\frac{1}{6y}

\small y=\frac{1}{3},\frac{1}{2}

Click here: Chapter Probability Part:3|Class 12|UGC CBCS| Statistics 

Tags: probability exam questions and answers pdf, hard probability questions, challenging probability problems pdf, basic probability problems with solutions pdf

Post a Comment (0)
Previous Post Next Post