MCQs on Rectengular or Uniform distribution, Gamma distribution, Beta distribution

 


1.Mean of the uniform distribution is$\small [X\sim U(a,b)]$
a)$\small \frac{b+a}{2}$ 
b)$\small \frac{b^2+a^2}{2}$ 
c)$\small \frac{b-a}{2}$
Ans: a
2. The mean deviation about the mean of the uniform distribution is 
a)$\small \frac{b+a}{2}$ 
b)$\small \frac{b^2+a^2}{2}$ 
c)$\small \frac{b-a}{4}$
Ans: c
3.If $\small X$ is uniformly distributed with mean 1 and var =$\small \frac{4}{3}$ then find the $\small P(X<0)$
a) $\small \frac{1}{4}$ 
b)$\small \frac{1}{3}$
c)$\small \frac{1}{2}$ 
Ans: a
4. If $\small X$ has Uniform distribution in $\small [0,1]$. what will be the distribution of $\small Y=-2logX$?
a)F dist
b)t dist 
c)$\small \chi_{2}$
Ans: c

MCQs on Negative Binomial, Geometric, Hypergeometric distribution

 

5. M.G.F of gamma distribution is 
a)$\small (1-t)^{-\lambda}$ 
b)$\small (1-t)^{\lambda}$ 
c)$\small (1-t)^{-t\lambda}$
Ans: a
6.If $X\sim \gamma(a,\lambda_{i})$, then $\sum_{i=1}^{n}X_{i}\sim$ ?
a)$\small \gamma(a,\sum_{i=1}^{n}\lambda_{i})$ 
b)$\small \gamma(na,\sum_{i=1}^{n}\lambda_{i})$ 
c)$\small\gamma(0,\sum_{i=1}^{n}\lambda_{i})$
Ans: a 
7. "Gamma distribution follows additive property" justify the statement?
a)Yes 
b)No 
c)Some times 
Ans: a
8. If $\small X$ and $\small Y$ are both Gamma variates then $\small \frac{X}{X+Y}$ follows which distribution
a)gamma 
b)exponential 
c)beta 
Ans: b

 

MCQs on Poisson Distribution

9.If the two parameters are both 1 for Beta first distribution of first kind, then  it indicates the distribution is directly redirected to 
a)Uniform 
b)gamma 
c)Normal 
Ans: a
10. The limiting case of gamma distribution follows 
a)Normal
b)Beta 
c)Gamma 
Ans: a




Post a Comment (0)
Previous Post Next Post