1.Mean of the uniform distribution is$\small [X\sim U(a,b)]$
a)$\small \frac{b+a}{2}$
b)$\small \frac{b^2+a^2}{2}$
c)$\small \frac{b-a}{2}$
Ans: a
2. The mean deviation about the mean of the uniform distribution is
a)$\small \frac{b+a}{2}$
b)$\small \frac{b^2+a^2}{2}$
c)$\small \frac{b-a}{4}$
Ans: c
3.If $\small X$ is uniformly distributed with mean 1 and var =$\small \frac{4}{3}$ then find the $\small P(X<0)$
a) $\small \frac{1}{4}$
b)$\small \frac{1}{3}$
c)$\small \frac{1}{2}$
Ans: a
4. If $\small X$ has Uniform distribution in $\small [0,1]$. what will be the distribution of $\small Y=-2logX$?
a)F dist
b)t dist
c)$\small \chi_{2}$
Ans: c
MCQs on Negative Binomial, Geometric, Hypergeometric distribution
5. M.G.F of gamma distribution is
a)$\small (1-t)^{-\lambda}$
b)$\small (1-t)^{\lambda}$
c)$\small (1-t)^{-t\lambda}$
Ans: a
6.If $X\sim \gamma(a,\lambda_{i})$, then $\sum_{i=1}^{n}X_{i}\sim$ ?
a)$\small \gamma(a,\sum_{i=1}^{n}\lambda_{i})$
b)$\small \gamma(na,\sum_{i=1}^{n}\lambda_{i})$
c)$\small\gamma(0,\sum_{i=1}^{n}\lambda_{i})$
Ans: a
7. "Gamma distribution follows additive property" justify the statement?
a)Yes
b)No
c)Some times
Ans: a
8. If $\small X$ and $\small Y$ are both Gamma variates then $\small \frac{X}{X+Y}$ follows which distribution
a)gamma
b)exponential
c)beta
Ans: b
MCQs on Poisson Distribution
9.If the two parameters are both 1 for Beta first distribution of first kind, then it indicates the distribution is directly redirected to
a)Uniform
b)gamma
c)Normal
Ans: a
10. The limiting case of gamma distribution follows
a)Normal
b)Beta
c)Gamma
Ans: a