1.Mean of the uniform distribution is\small [X\sim U(a,b)]
a)\small \frac{b+a}{2}
b)\small \frac{b^2+a^2}{2}
c)\small \frac{b-a}{2}
Ans: a
2. The mean deviation about the mean of the uniform distribution is
a)\small \frac{b+a}{2}
b)\small \frac{b^2+a^2}{2}
c)\small \frac{b-a}{4}
Ans: c
3.If \small X is uniformly distributed with mean 1 and var =\small \frac{4}{3} then find the \small P(X<0)
a) \small \frac{1}{4}
b)\small \frac{1}{3}
c)\small \frac{1}{2}
Ans: a
4. If \small X has Uniform distribution in \small [0,1]. what will be the distribution of \small Y=-2logX?
a)F dist
b)t dist
c)\small \chi_{2}
Ans: c
MCQs on Negative Binomial, Geometric, Hypergeometric distribution
5. M.G.F of gamma distribution is
a)\small (1-t)^{-\lambda}
b)\small (1-t)^{\lambda}
c)\small (1-t)^{-t\lambda}
Ans: a
6.If X\sim \gamma(a,\lambda_{i}), then \sum_{i=1}^{n}X_{i}\sim ?
a)\small \gamma(a,\sum_{i=1}^{n}\lambda_{i})
b)\small \gamma(na,\sum_{i=1}^{n}\lambda_{i})
c)\small\gamma(0,\sum_{i=1}^{n}\lambda_{i})
Ans: a
7. "Gamma distribution follows additive property" justify the statement?
a)Yes
b)No
c)Some times
Ans: a
8. If \small X and \small Y are both Gamma variates then \small \frac{X}{X+Y} follows which distribution
a)gamma
b)exponential
c)beta
Ans: b
MCQs on Poisson Distribution
9.If the two parameters are both 1 for Beta first distribution of first kind, then it indicates the distribution is directly redirected to
a)Uniform
b)gamma
c)Normal
Ans: a
10. The limiting case of gamma distribution follows
a)Normal
b)Beta
c)Gamma
Ans: a