Processing math: 0%

MCQs on Rectengular or Uniform distribution, Gamma distribution, Beta distribution

 


1.Mean of the uniform distribution is\small [X\sim U(a,b)]
a)\small \frac{b+a}{2} 
b)\small \frac{b^2+a^2}{2} 
c)\small \frac{b-a}{2}
Ans: a
2. The mean deviation about the mean of the uniform distribution is 
a)\small \frac{b+a}{2} 
b)\small \frac{b^2+a^2}{2} 
c)\small \frac{b-a}{4}
Ans: c
3.If \small X is uniformly distributed with mean 1 and var =\small \frac{4}{3} then find the \small P(X<0)
a) \small \frac{1}{4} 
b)\small \frac{1}{3}
c)\small \frac{1}{2} 
Ans: a
4. If \small X has Uniform distribution in \small [0,1]. what will be the distribution of \small Y=-2logX?
a)F dist
b)t dist 
c)\small \chi_{2}
Ans: c

MCQs on Negative Binomial, Geometric, Hypergeometric distribution

 

5. M.G.F of gamma distribution is 
a)\small (1-t)^{-\lambda} 
b)\small (1-t)^{\lambda} 
c)\small (1-t)^{-t\lambda}
Ans: a
6.If X\sim \gamma(a,\lambda_{i}), then \sum_{i=1}^{n}X_{i}\sim ?
a)\small \gamma(a,\sum_{i=1}^{n}\lambda_{i}) 
b)\small \gamma(na,\sum_{i=1}^{n}\lambda_{i}) 
c)\small\gamma(0,\sum_{i=1}^{n}\lambda_{i})
Ans: a 
7. "Gamma distribution follows additive property" justify the statement?
a)Yes 
b)No 
c)Some times 
Ans: a
8. If \small X and \small Y are both Gamma variates then \small \frac{X}{X+Y} follows which distribution
a)gamma 
b)exponential 
c)beta 
Ans: b

 

MCQs on Poisson Distribution

9.If the two parameters are both 1 for Beta first distribution of first kind, then  it indicates the distribution is directly redirected to 
a)Uniform 
b)gamma 
c)Normal 
Ans: a
10. The limiting case of gamma distribution follows 
a)Normal
b)Beta 
c)Gamma 
Ans: a




Post a Comment (0)
Previous Post Next Post